先进过程控制(APC)的发展应用和国内外主流厂商
先进过程控制(Advanced Process Control,APC)是一类区别于常规PID控制的控制策略的统称,主要用来处理常规控制效果不好,甚至无法控制的复杂工业过程控制问题。APC已经在炼油、石化、化工、建材、冶金、热电等流程工业得到应用,有效地帮助企业提升了生产效率、产品质量和资源利用效率。
本文将介绍流程工业的APC技术及应用,并盘点国内外主要的APC厂商。
在此特别感谢中控技术创始人褚健、中控技术过程控制与优化领域专家金晓明两位老师对本文的指导和建议。
1.工业过程控制发展概述
控制的历史可追溯至公元前1500年,当时的计时器-水钟已经蕴含了早期的控制思想。时至今日,控制在日常生活中无处不在,家用电器、交通工具、运载火箭、载人飞船都是被控制的对象,应用了控制理论和相关技术。工业过程控制是控制理论在工业生产中的应用,例如对温度、压力、流量、物位、成分等过程量的测量和控制。
工业过程控制主要经历了简单控制、复杂控制和先进控制的阶段。通常将单回路控制称为简单控制,它以经典控制理论为基础,通常采用PID(Proportional-Integral-Derivative,即比例-积分-微分)控制策略。目前,PID控制仍然得到广泛应用,在许多DCS、PLC系统中,均设有PID控制模块或算法软件。
如何理解PID控制?以控制水槽水位为例,比例环节会根据水位和目标水位的偏差大小来调整进水阀门,偏差越大,调整幅度越强;积分环节则考虑偏差的累积,如果水位持续低于设定值,积分作用会使阀门逐渐开大,反之则关小,以消除稳态误差;微分环节则依据偏差的变化趋势,提前做出调整,减少波动和超调。
通常的简单控制主要针对单变量对象,之后陆续出现串级、比值、前馈、均匀、分程、选择性、Smith预估控制等复杂控制系统,不仅实现了对于单变量控制的一些特殊、严苛的控制性能要求,例如减小超调或减少调节时间,而且在很大程度上为实现复杂生产过程多个回路的协作和多个变量的协调控制提供有力支撑。
以管式加热炉的控制为例,在单回路控制系统中,燃料压力或燃料热值变化影响炉膛温度变化,进而将热传导给原料,再根据原料出口温度调整燃料阀门。而在串级控制系统中,通过加测炉膛温度变化,在发生扰动时先通过T2T、T2C回路提前控制(粗调),再通过T1T、T1C回路实现精调,一定程度地增强了系统的抗干扰性,使其能够更快地从扰动中恢复至稳定的运行状态。
然而,在工业生产过程中,仍有一部分上述控制系统难以解决的控制问题,例如具有大时滞、强耦合、多约束等复杂特性的对象。这些问题往往存在于生产过程的核心环节,直接关系到产品质量、产率等关键指标。
与此同时,随着工业不断发展,尤其是流程工业走向大型化、集成化、连续化、复杂化,对生产过程控制的要求日益提高,增加了更多经济效益、安全管控、绿色节能等指标要求,而传统的基础控制技术难以满足需求,迫切需要一类合适的、更先进的控制策略和技术来解决过程控制与效益指标的矛盾。因此,先进过程控制应运而生并不断发展。
图2 从常规PID控制到先进过程控制
2.APC及关键技术
先进过程控制APC是相对于常规控制而言的,能处理常规控制所不能处理的问题的技术,都可称为先进过程控制。作为控制方法的统称,先进过程控制囊括了许多不同的控制技术。
表1 传统控制技术与先进过程控制技术
相比常规PID控制,先进过程控制在处理大时滞、多变量、多约束控制问题,实现平稳控制与卡边操作,提升控制系统适应性和鲁棒性等方面具有优势。
表2 传统PID控制与先进过程控制比较
目前,模型预测控制(Model Predictive Control,MPC)应用最为广泛的先进控制策略。模型预测控制是一种基于过程动态模型的控制策略,通过预测模型预估被控变量未来的变化趋势,并以被控变量的当前实测值与上一时刻对当前时刻的预测值之间的偏差,修正对未来时刻的预测,进而提前做出控制决策,优化当前时刻的控制输入。模型预测控制通过模型预测、反馈校正和滚动优化三大核心步骤,使模型失配、外部干扰等引起的不确定性及时得到克服,从而大大改善控制系统的动态性能。
模型预测控制如同汽车的智能驾驶系统,这个系统不仅知道车辆当前位置,还了解前方的路况、交通规则,能够预测未来可能遇到的情况。基于这些预测,系统为驾驶员规划出一条最优的行驶路线,并指导车辆何时加速、何时减速、何时转弯,以安全、高效地到达目的地。
图3 模型预测控制基本原理示意
先进过程控制应用的基础是生产过程的大量实时数据、过程动态数学模型以及先进控制策略。相应地,APC产品一般包括多变量预测控制、软测量、性能评估、建模设计等主要模块和功能。例如,中控的InPlant APC产品包含多变量预测控制APC-Adcon、智能软测量APC-Sensor、性能监控和性能优化APC-Watch、先进控制平台APC-iSYS等。以MPC为核心的APC系统架构可参考下图。
图4 APC软件架构示意
APC系统的硬件架构可参考下图。APC系统通过先进控制软件与DCS上的常规控制器集成,对装置工艺参数全面调节,实现生产过程中多个控制目标。APC并不直接控制仪表和设备,APC与DCS之间通常通过OPC进行通讯,在一定情况下APC和DCS常规控制可以实现互相切换,确保设备安全稳定运行。
图5 APC网络架构案例
虽然APC可以帮助企业提高生产装置平稳性,实现卡边操作,但是APC需要设定好被控变量的目标值以及工作范围。而借助实时优化(Real Time Optimization,RTO)技术,通过工艺机理模型和全流程模拟,可以为APC提供被控变量的优化目标值和操纵变量的理想静态值等参数,使装置在不同负荷和不同生产方案下,都能保持在优化运行状态。因此,“APC+RTO”这一组合在过程控制领域经常被提及。
例如,在乙烯裂解过程中,APC负责监控和控制裂解炉的炉管出口温度COT、精馏塔灵敏板温度等关键变量,确保操作的稳定性和产品的一致性。同时,RTO分析原料质量、原料成本、设备性能等数据,实时调整操作策略,以最大化烯烃收率和整体效益为目标,给出COT温度、灵敏板温度等的优化目标值等。
“RTO+APC”相结合的典型流程行业分层过程控制结构图如图6所示。
-
RTO层:根据上层给出的物料价格、生产工艺等参数来周期性地优化出一个目标函数,将其计算出的变量优化值作为APC中关键变量的设定值。
-
APC层:通过APC实现过程控制的最优调节,同时完成紧急情况响应和诊断等工作。
-
常规控制层:通过DCS/PLC等自动控制系统实现工业装置的数据获取、错误检测、常规控制和性能监控。
3.APC发展方向
1.APC应用概述
-
炼油行业:常减压装置、催化裂化装置、连续重整装置、加氢裂化装置、加氢精制装置、延迟焦化装置、气体分馏装置。
-
石化行业:乙烯装置、芳烃联合装置、芳烃抽提装置、烷基苯装置、分子筛脱蜡、苯乙烯装置、PTA装置、聚丙烯装置、聚乙烯装置。
-
化工行业:纯碱装置、氯碱装置、合成氨装置、氟化工装置、电石炉装置、有机硅装置、多晶硅装置、甲醇装置、硫酸/磷酸装置。
-
其它行业:锅炉、空分装置、硬质合金反应过程、煤气混合过程等。
2.APC应用案例
3.APC应用挑战
1.国际厂商
-
1995年底,霍尼韦尔收购Profimatics,霍尼韦尔提供RMPC算法与Profimatics PCT控制器合并,推出RMPCT产品。
-
1996年初,艾斯本收购Setpoint(旗下有IDCOM-M、SMCA)和美国DMC公司(旗下有DMC),随后于1998年收购加拿大Treiber Controls公司(旗下有OPC),艾斯本将SMCA和DMC技术被合并,推出了DMCplus产品。2021年,艾默生收购艾斯本55%的股权。
-
2014年,施耐德电气并购英维思(旗下有SimSci-Esscor),后者曾收购美国Foxboro公司(旗下有Connoisseur)。2017年施耐德电气收购AVEVA剑维软件约60%股权,2023年1月施耐德电气完成对AVEVA剑维软件100%的并购控股。
-
2016年,罗克韦尔自动化收购MAVERICK Technologies。
表3 国际APC厂商
(e-works整理,按厂商名称英文首字母排序)
2.国内厂商
表4 国内流程工业APC厂商
(e-works整理,按厂商名称拼音首字母排序)
说明:文中厂商的盘点基于公开信息所得,如有遗漏,欢迎留言补充。
[1] 王再英等.过程控制系统与仪表[M]. 北京:机械工业出版社.
[2] 浙江中控软件技术有限公司.国产先进控制软件的开发、应用与前景展望.自动化博览, 2012,29(12):34-37.
[3] 化工装置实时优化系统值不值得?
https://mp.weixin.qq.com/s/lpjEsE7Ncxe3XhuvNhzIIQ
[4] 金晓明,褚健.先进控制技术及其应用[J].世界仪表与自动化, 2001(9):10-15.
[5] 赵恒平.中国石化先进过程控制应用现状[J].化工进展, 2015, 34(4):930-934.
[6] 黄德先.化工过程先进控制的发展过程、国内特殊问题的解决和展望[J].化工自动化及仪表, 2023, 50(5):597-610.
[7] 先进控制技术在流程工业中的应用.
https://mp.weixin.qq.com/s/5L2u1Tr2IOYELRWZ83KTlA
[8] 工信部:《2022年重点用能行业能效“领跑者”企业典型经验与实践案例(乙烯行业)》.
[9] 郭永增,李亦方.APC在煤化工聚烯烃装置中的应用[J].能源与节能, 2015(11):153-155.
[10] 李立勋,田勇,史页殊,等.冶金工艺先进过程控制系统定义高品质钢材生产[C].第十一届中国钢铁年会论文集——S18.冶金自动化与智能管控.2017.
[11] 祝路平,毛双华,林国辉.APC先控在浙江巨化热电有限公司#8机组的运用[J].自动化博览, 2019(7):88-94.
[12] 徐立东,杨宏兴,郭军锋,等.AVEVA APC系统在水泥窑烧成系统中的应用[J].化工自动化及仪表, 2022,49(5):638-643;668.
[13] 柴天佑,刘强,丁进良,等.工业互联网驱动的流程工业智能优化制造新模式研究展望. 中国科学:技术科学, 2022,52:14-25.
[14] 金晓明.过程自动化系统的发展现状与展望[J].化工自动化及仪表, 2024,51(1):1-9.